Practice and reinforce the concepts from Lesson 11
Develop privacy-preserving AI systems that run entirely on mobile devices, enabling powerful machine learning capabilities while keeping user data completely private and secure, with focus on social impact applications that serve vulnerable populations.
By completing this activity, you will:
You're developing on-device AI capabilities for social impact apps serving vulnerable populations including domestic violence survivors, political dissidents, undocumented immigrants, and individuals in countries with surveillance concerns.
Create ML models that run efficiently on mobile devices with limited resources.
interface DeviceConstraints {
availableRAM: number; // MB
processingPower: number; // relative scale
batteryCapacity: number; // mAh
storageSpace: number; // MB available
thermalLimits: ThermalLimit;
powerBudget: PowerBudget;
}
interface PrivacySensitiveTask {
taskType: 'text_analysis' | 'image_recognition' | 'voice_processing' | 'behavior_prediction';
sensitivityLevel: 'low' | 'medium' | 'high' | 'critical';
accuracyRequirement: number; // minimum acceptable accuracy
latencyRequirement: number; // maximum acceptable latency ms
privacyRequirements: PrivacyRequirement[];
}
class OnDeviceMLEngine {
constructor(
private modelOptimizer: ModelOptimizer,
private deviceProfiler: DeviceProfiler,
private privacyGuard: PrivacyGuard
) {}
// TODO: Implement model quantization and compression
async optimizeModelForDevice(
baseModel: MLModel,
deviceConstraints: DeviceConstraints,
accuracyThreshold: number
): Promise<OptimizedMLModel> {
// Quantize model weights to reduce memory usage
// Prune unnecessary connections and layers
// Apply knowledge distillation for model compression
// Optimize for specific device architectures (ARM, GPU)
// Your implementation here
}
// TODO: Create adaptive inference system
async createAdaptiveInference(
modelVariants: MLModelVariant[],
currentDeviceState: DeviceState,
taskUrgency: TaskUrgency
): Promise<AdaptiveInferenceSystem> {
// Switch between model complexities based on device state
// Use lighter models when battery is low
// Employ progressive inference for better user experience
// Cache frequent predictions to reduce computation
// Your implementation here
}
// TODO: Privacy-preserving feature extraction
async extractPrivacyPreservingFeatures(
rawData: SensitiveData,
taskRequirements: PrivacySensitiveTask,
privacyBudget: PrivacyBudget
): Promise<PrivateFeatureVector> {
// Apply differential privacy to feature extraction
// Use homomorphic encryption for sensitive computations
// Implement secure multi-party computation where needed
// Ensure no raw data leakage in processed features
// Your implementation here
}
}
Implement collaborative learning systems that improve models without sharing user data.
class FederatedLearningSystem {
// TODO: Secure aggregation protocol
async implementSecureAggregation(
localModelUpdates: LocalModelUpdate[],
aggregationProtocol: AggregationProtocol,
privacyParameters: FederatedPrivacyParams
): Promise<AggregatedModelUpdate> {
// Cryptographically secure model parameter aggregation
// Differential privacy in gradient sharing
// Byzantine-robust aggregation against malicious participants
// Zero-knowledge proofs for model update authenticity
// Your implementation here
}
// TODO: Local training with privacy guarantees
async trainLocalModelPrivately(
localData: LocalUserData,
globalModel: GlobalModel,
privacyConstraints: PrivacyConstraint[]
): Promise<PrivateLocalModelUpdate> {
// Train only on user device, never expose raw data
// Apply differential privacy to gradient computations
// Use secure aggregation protocols
// Implement client-side data validation and cleaning
// Your implementation here
}
// TODO: Decentralized model coordination
async coordinateDecentralizedLearning(
peerDevices: PeerDevice[],
learningObjectives: LearningObjective[],
trustNetwork: TrustNetwork
): Promise<DecentralizedLearningNetwork> {
// Peer-to-peer model sharing without central authority
// Reputation-based trust system for model quality
// Byzantine fault tolerance in distributed training
// Cultural bias detection and mitigation across regions
// Your implementation here
}
}
Create personalization systems that learn user preferences without exposing personal data.
interface PersonalizationContext {
culturalBackground: CulturalBackground;
languagePreferences: LanguagePreference[];
accessibilityNeeds: AccessibilityNeed[];
usagePatterns: UsagePattern[];
privacyPreferences: PrivacyPreference[];
sensitivityLevel: DataSensitivityLevel;
}
class PrivatePersonalizationEngine {
// TODO: Local preference learning
async learnUserPreferencesLocally(
userInteractions: UserInteraction[],
personalizationGoals: PersonalizationGoal[],
privacyBudget: PrivacyBudget
): Promise<LocalUserModel> {
// Learn patterns without storing personal identifiers
// Use differential privacy in preference extraction
// Implement forgetting mechanisms for outdated preferences
// Respect user control over personalization level
// Your implementation here
}
// TODO: Culturally sensitive adaptation
async adaptCulturallyAndPrivately(
userCulturalContext: PersonalizationContext,
availableAdaptations: CulturalAdaptation[],
privacyConstraints: PrivacyConstraint[]
): Promise<CulturallyAdaptedExperience> {
// Personalize without cultural stereotyping
// Respect individual variations within cultural groups
// Protect cultural identity information from exposure
// Enable user control over cultural personalization
// Your implementation here
}
// TODO: Anonymous recommendation system
async generateAnonymousRecommendations(
localUserModel: LocalUserModel,
availableContent: Content[],
similarityMetrics: AnonymousSimilarityMetric[]
): Promise<PrivateRecommendations> {
// Generate recommendations without revealing user identity
// Use homomorphic encryption for similarity computations
// Implement k-anonymity in recommendation generation
// Provide transparency in recommendation reasoning
// Your implementation here
}
}
Implement voice AI that processes speech without sending audio to servers.
class PrivateVoiceProcessing {
// TODO: On-device speech recognition
async processVoiceLocally(
audioInput: AudioInput,
languageModels: LocalLanguageModel[],
privacySettings: VoicePrivacySettings
): Promise<PrivateSpeechResult> {
// Convert speech to text entirely on device
// Support multiple languages and accents
// Handle background noise and poor audio quality
// Never store or transmit raw audio data
// Your implementation here
}
// TODO: Voice biometric protection
async protectVoiceBiometrics(
voiceFeatures: VoiceFeature[],
biometricProtocol: BiometricProtectionProtocol,
anonymizationLevel: AnonymizationLevel
): Promise<ProtectedVoiceProcessing> {
// Extract useful features while protecting voice print
// Use voice conversion techniques for anonymization
// Implement secure voice authentication without storage
// Protect against voice replay and deepfake attacks
// Your implementation here
}
// TODO: Multilingual voice understanding
async processMultilingualVoice(
multilingualInput: MultilingualAudioInput,
culturalContext: CulturalVoiceContext[],
privacyRequirements: MultilingualPrivacyRequirement[]
): Promise<CulturallyAwareVoiceResult> {
// Understand code-switching between languages
// Respect cultural voice communication patterns
// Handle dialects and regional accents privately
// Protect linguistic minority language patterns
// Your implementation here
}
}
Build image processing AI that works locally without exposing visual data.
class PrivateComputerVision {
// TODO: Local image analysis and recognition
async analyzeImagesLocally(
imageInput: ImageInput,
analysisRequirements: ImageAnalysisRequirement[],
privacyProtections: ImagePrivacyProtection[]
): Promise<PrivateImageAnalysis> {
// Object detection and recognition on device
// Facial analysis without facial recognition storage
// Text extraction and OCR locally
// Scene understanding and context analysis
// Your implementation here
}
// TODO: Differential privacy in image processing
async applyDifferentialPrivacyToVision(
imageFeatures: ImageFeature[],
privacyBudget: PrivacyBudget,
utilityRequirements: UtilityRequirement[]
): Promise<PrivateImageFeatures> {
// Add calibrated noise to protect individual privacy
// Maintain utility for aggregate analysis
// Protect against membership inference attacks
// Enable privacy-utility trade-off control
// Your implementation here
}
// TODO: Secure visual content filtering
async filterContentSecurely(
visualContent: VisualContent[],
contentPolicies: ContentPolicy[],
culturalSensitivities: CulturalContentSensitivity[]
): Promise<SecureContentFiltering> {
// Filter harmful content without exposing content to servers
// Respect cultural differences in content appropriateness
// Protect user privacy while ensuring safety
// Enable user customization of filtering levels
// Your implementation here
}
}
Implement secure local storage systems that protect user data even if device is compromised.
class SecureLocalDataManager {
// TODO: Zero-knowledge local storage
async implementZeroKnowledgeStorage(
sensitiveData: SensitiveUserData,
encryptionKeys: EncryptionKey[],
accessControlPolicies: AccessControlPolicy[]
): Promise<ZeroKnowledgeStorage> {
// Client-side encryption with user-controlled keys
// Forward secrecy for evolving data
// Secure key derivation and management
// Protection against physical device access
// Your implementation here
}
// TODO: Secure data deletion and forgetting
async implementSecureDataDeletion(
dataToDelete: DataIdentifier[],
deletionVerification: DeletionVerificationMethod,
complianceRequirements: DataComplianceRequirement[]
): Promise<SecureDeletionResult> {
// Cryptographically secure data deletion
// Verification of complete data removal
// Compliance with right-to-be-forgotten regulations
// Secure handling of data remnants and caches
// Your implementation here
}
// TODO: Decentralized backup without exposure
async createPrivateBackupSystem(
criticalData: CriticalUserData,
backupStrategy: PrivateBackupStrategy,
recoveryMechanisms: RecoveryMechanism[]
): Promise<PrivateBackupSystem> {
// Distributed backup without exposing data to any single party
// Secret sharing for critical data recovery
// End-to-end encrypted cloud integration
// Peer-to-peer backup networks
// Your implementation here
}
}
Generate useful analytics and insights while protecting individual privacy.
class PrivateAnalyticsEngine {
// TODO: Differential privacy analytics
async generateDifferentialPrivateInsights(
userBehaviorData: UserBehaviorData[],
analyticsQueries: AnalyticsQuery[],
privacyBudgetAllocation: PrivacyBudgetAllocation
): Promise<PrivateAnalyticsResults> {
// Generate population-level insights with privacy guarantees
// Budget privacy expenditure across different analyses
// Protect against database reconstruction attacks
// Provide utility-privacy trade-off transparency
// Your implementation here
}
// TODO: Federated analytics coordination
async coordinateFederatedAnalytics(
distributedDataSources: DistributedDataSource[],
aggregationProtocols: SecureAggregationProtocol[],
verificationMechanisms: VerificationMechanism[]
): Promise<FederatedAnalyticsResults> {
// Coordinate analytics across multiple devices
// Verify analytical results without exposing individual data
// Detect and handle malicious participants
// Maintain analytical accuracy while preserving privacy
// Your implementation here
}
// TODO: Privacy-preserving A/B testing
async conductPrivateABTesting(
testVariants: TestVariant[],
userSegments: AnonymousUserSegment[],
effectMeasurements: PrivateEffectMeasurement[]
): Promise<PrivateABTestResults> {
// Test product changes without exposing individual responses
// Ensure statistical validity with privacy constraints
// Handle selection bias in privacy-preserving manner
// Enable ethical experimentation on vulnerable populations
// Your implementation here
}
}
Submit the following completed implementations:
Your solution will be evaluated on:
Your privacy-preserving AI could serve:
For help during this activity:
Remember: Privacy-preserving AI isn't just about technical implementation-it's about empowering vulnerable populations with AI capabilities while protecting them from surveillance, exploitation, and discrimination.